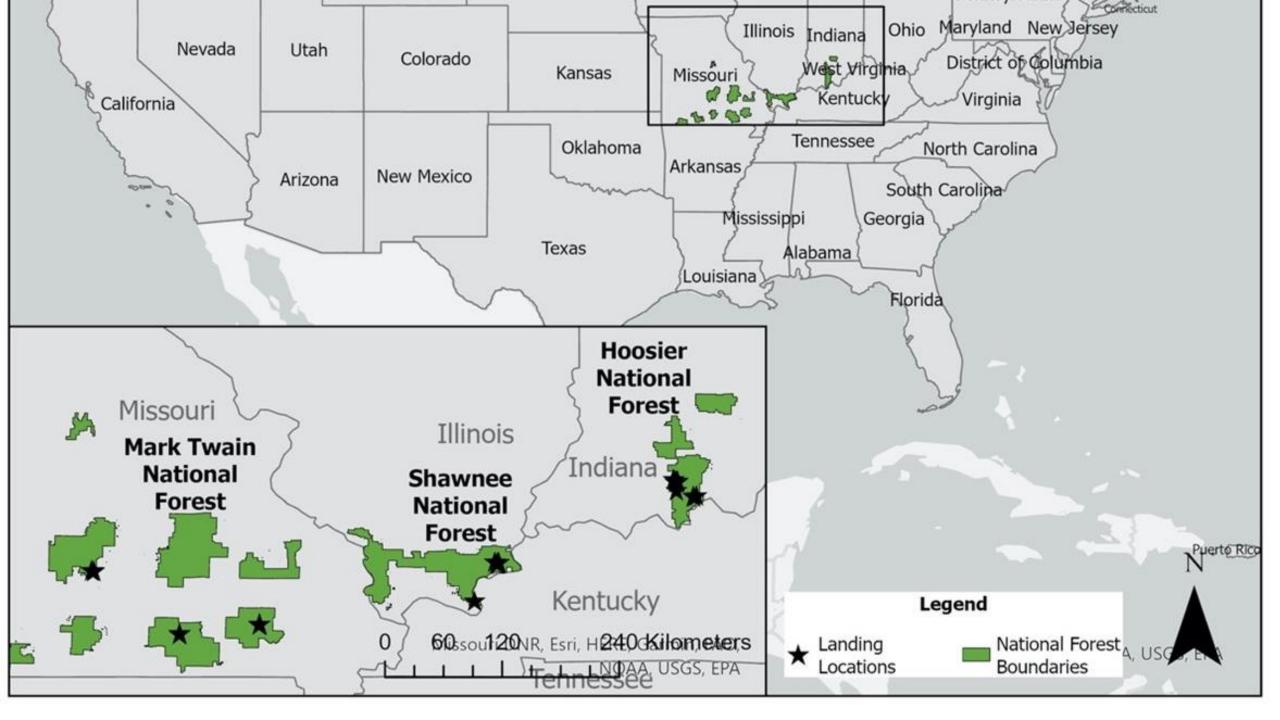
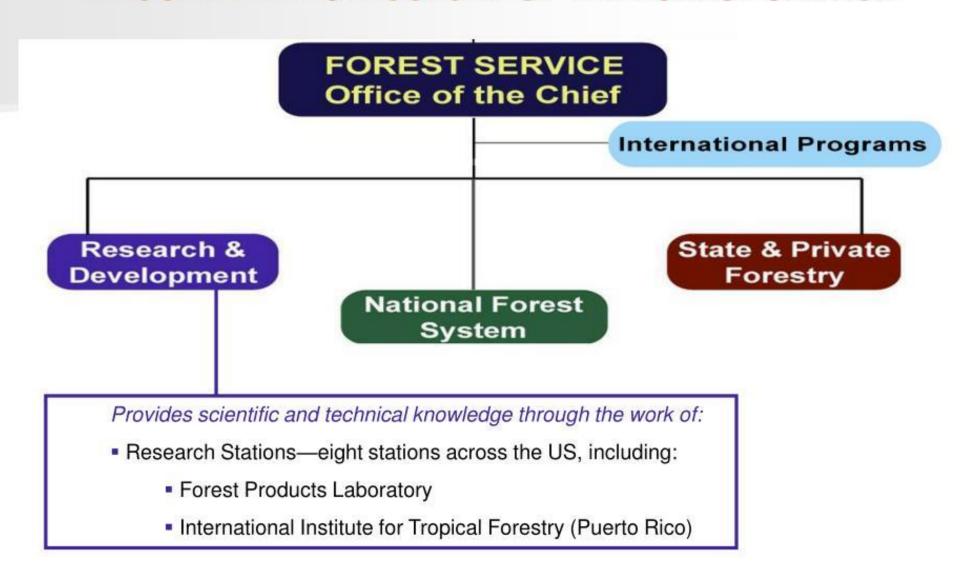
The PHiLL (Pollinator Habitat in Log Landings) Project How a grassroots management problem became a collaborative research study across 3 National Forests.

Cheryl Coon, Hoosier National Forest, south central Indiana Lauren Pile, PhD, Northern Research Station, Columbia, MO

The Management Need

- Poor plant regeneration on highly impacted log landings
- Log Landings are highly visible.
- Harvests are controversial with some of our public.
- How do we mitigate the soil compaction issue?




How do we do this? Who can be partners?

- Asked for help/thoughts from other Forests/Regional Office/ local University contacts.
- Two other Forests are interested in idea.
- Looked into grants/local funding – no good fit
- How share knowledge with partners and get the data?
- Budgets are limited.

A LOOK AT THE STRUCTURE OF THE FOREST SERVICE

The glue = Northern Research Station (NRS)

Collaboration aka Co-production of Knowledge

A new paradigm or a long-standing way of doing business? Trust Ecology

- Scientists, managers, others, working together to develop practical solutions
- Requires developing relationships between managers and scientists
- Field Days and Networking were supported by Leadership

Continuing the Culture: A new scientist to NRS

Why Wild Bees?

Over 20,000 described bee species worldwide

• 400-500 species in U.S. midwestern states

- Wild bees are very different than European honeybees
- Majority are solitary species
- Worldwide > 70 nest in the ground
- Crucial for pollination services
- Due to their feeding ecology, bees are very effective pollinators

Who are we? National Forest Project Team

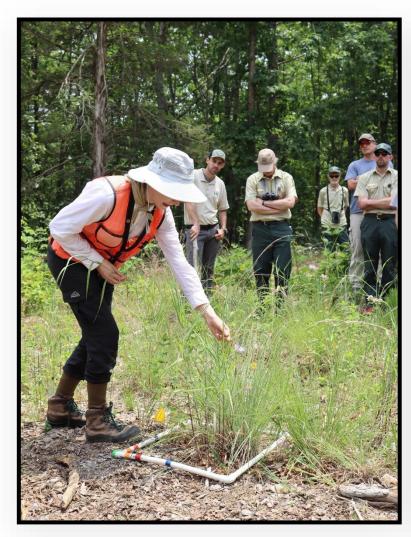
Hoosier National Forest: Jason Combs, Cheryl Coon, Bryan King, Jason Isbell, Chad Menke, Travis Swaim, and Chris Thornton

Mark Twain National Forest: Brian Davidson, Matt Dillion, Casey Hawes, Corey Large, Andrew Radomski, Scot Robinson, Kyle Steele, Mike Stevens, and Megan York-Harris

Shawnee National Forest: Justin Dodson, Brooke Hagarty, Lisa Helmig, Lennie Pitcher, and Mark Vukovich

Who are we? Research Team

Susannah Lerman – NRS Research Ecologist Pollinator Ecology


David King – NRS Research Wildlife Biologist Pollinator Ecology

Ben Knapp – University of Missouri Associate Professor Silviculture Debbie Dumroese – RMRS Research
Soil Scientist
Forest Soils/Biochar
John Kabrick – NRS Research
Forester
Silviculture/Forest Soils
Morgan Davis – University of Missouri
Assistant Professor
Soils

Lauren Pile – NRS Research
Ecologist
Invasive Plant
Ecology/Disturbance

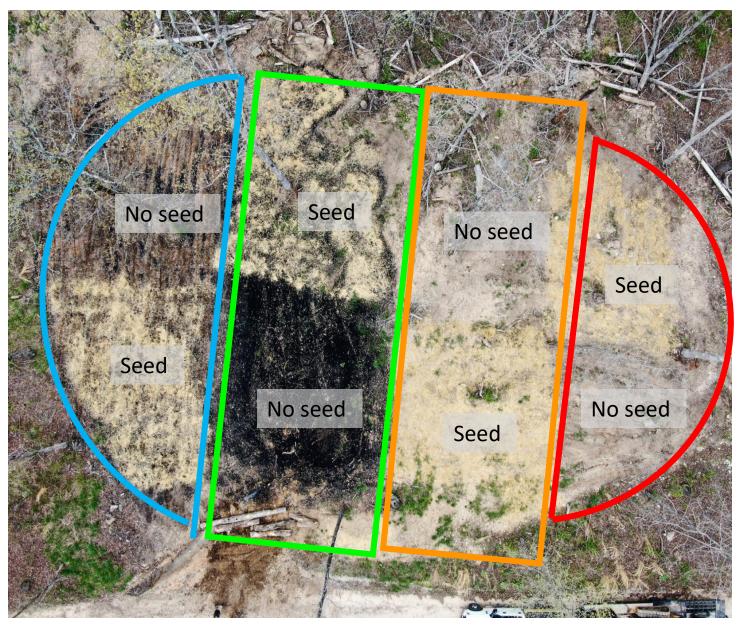
Dan Dey – NRS Research Forester Silviculture/Forest Management

Who Are We? The Graduate Students

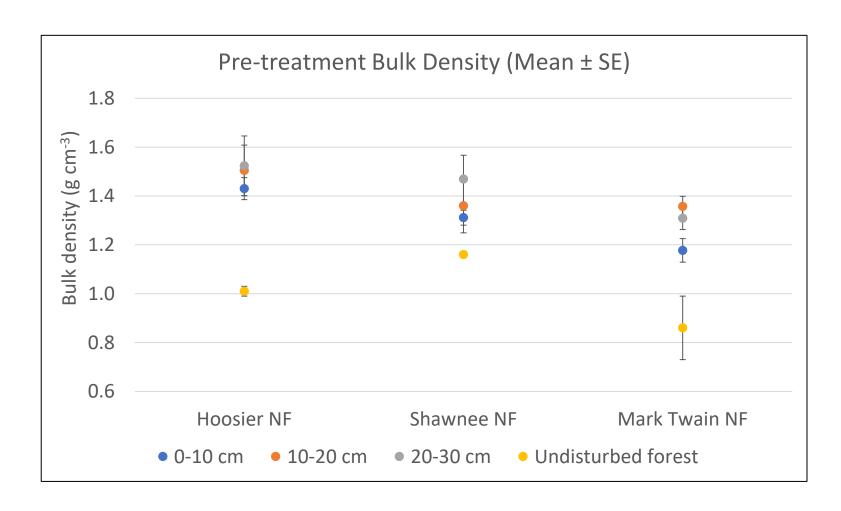
Sloane Scott – Plants

Aliza Boles Fassler – Bees

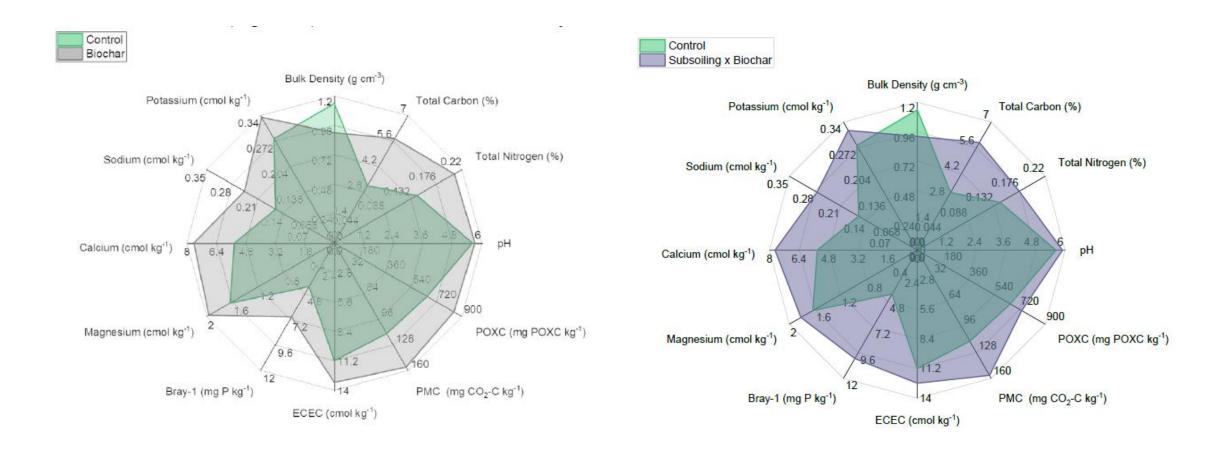
Will Rumpf – Soils


The Integrated Experiment

Goal:


Rapid Establishment of Functional (Ephemeral)
Pollinator Habitat

Biochar + Subsoil Biochar Control Subsoil

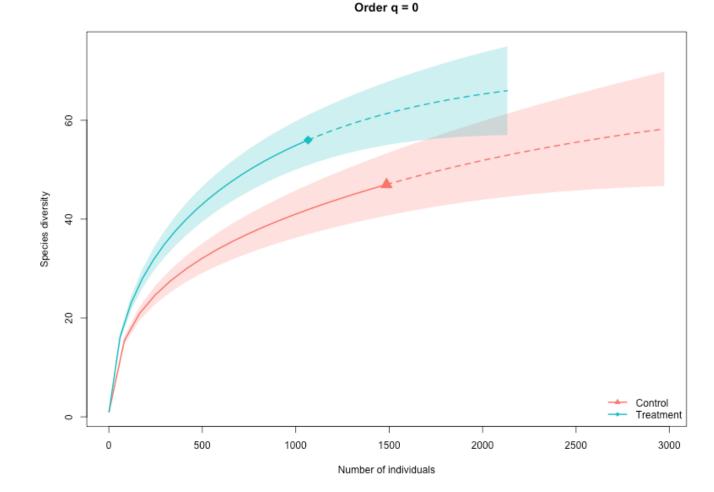

Pre-treatment Soil Sampling - Compaction

Key takeaway: Biochar and biochar + subsoiling increases other soil properties

Key takeaway: Only some plants perform well and seeding matters most.

↑ = abundant ↔ = occasional ○ = rare or absent Flowering Period

	Species Name	Spring	Summer	Fall	Outcome
Amorpha canescens					O
Asclepias syricea				1	\bigcirc
Asclepias tuberosa					\leftrightarrow
Coreopsis lanceolata					\uparrow
Coreopsis tinctoria					\leftrightarrow
Dalea purpurea					\bigcirc
Echinacea pallida					\leftrightarrow
Penstemon digitalis					\leftrightarrow
Rudbeckia hirta					\uparrow
Tephrosia virginiana					\bigcirc
Tradescantia ohiensis					\leftrightarrow
Bidens aristosa		The Aller Williams			\uparrow
Chamaecrista fasiculata					\uparrow
Eryngium yuccifolium					\leftrightarrow
Eupatorium fistulosum					\leftrightarrow
Eupatorium perfoliatum					\bigcirc
Helianthus angustifolius					\uparrow
Heliopsis helianthoides	了。 第一章				\leftrightarrow
Lespedeza virginica					\leftrightarrow
Monarda fistulosa					\uparrow
Oenothera biennis	公平公东西、张 ·蒙达				
Pycnanthemum tenuifolium					\uparrow
Silphium perfoliatum					\leftrightarrow
Verbesina alternifolia	医外外的				\leftrightarrow
Zizia aurea					
Aster novae-angliae					\leftrightarrow
Solidago nemoralis					\leftrightarrow


Bee Diversity

Hoosier NF (2021)

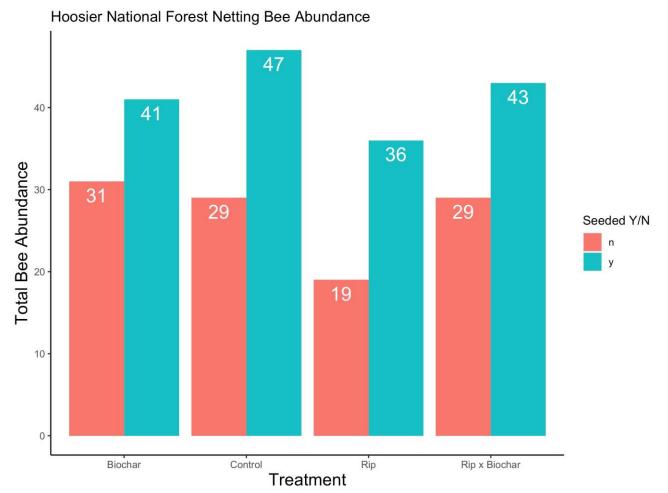
Pan trapping

N = 3,001 bees

- 2,552 are identified (85%)
- 62 different species
- Higher diversity on treated landings

Assemblage <chr></chr>	Diversity <chr></chr>	Observed <dbl></dbl>	Estimator <dbl></dbl>	s.e. <dbl></dbl>	LCL <dbl></dbl>	UCL <dbl></dbl>
Control	Species richness	47.000000	68.318977	22.5558079	47.000000	112.527548
Control	Shannon diversity	6.539392	6.700857	0.3037201	6.105577	7.296138
Control	Simpson diversity	2.949610	2.953488	0.1115100	2.734932	3.172043
Treatment	Species richness	56.000000	70.436445	11.5851304	56.000000	93.142883
Treatment	Shannon diversity	9.778599	10.139415	0.5019157	9.155678	11.123152
Treatment	Simpson diversity	4.141269	4.153520	0.1985141	3.764440	4.542601

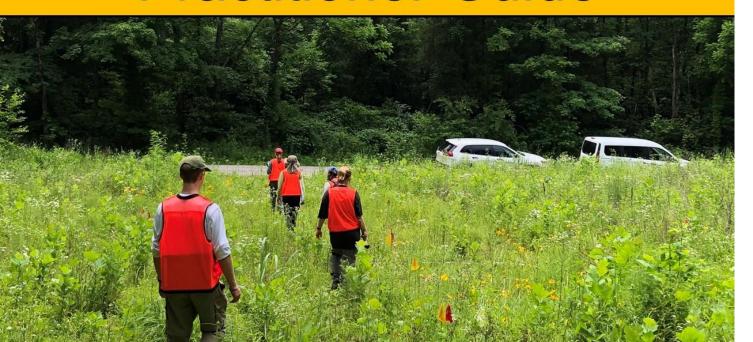
Bee Abundance

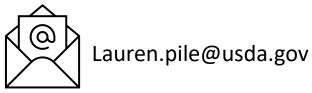

Hoosier NF (2021)

Timed netting

N = 531 bees

Number of Bees	
Collected on Flor	a


		Collected on Floral
Species	Common Name	Host
Rudbeckia hirta	Black-eyed susan	79
Erigeron annuus	Daisy Fleabane	74
Melilotus albus	Yellow Sweet Clover	25
Daucus carota	Queen Anne's Lace	21
Chamaecrista fasciculata	Partridge Pea	18
Ludwigia alternifolia	Boxplant	17
Trifolium repens	White Clover	15
Coreopsis tinctoria	Plains Coreopsis	13
Oxalis stricta	Wood sorrel	10
Pyscnanthemum tenuifolium	Slender Mountain Mint	10



Practitioner Guide

Currently in final editing!

Acknowledgements

We would like to thank the line officers on the Mark Twain NF, Shawnee NF, and the Hoosier NF for their support and commitment to this grassroots project.

We would also like to thank the equipment operators and other volunteers who helped with the on-the-ground implementation of the project.

We would like to thank our many colleagues who have support this project including Gary Scott, Dennis Krusac (retired), Greg Nowacki, Jason Stevens, Dacoda Maddox, and Ethan Ponder. We would like to thank our field technicians on the project Jackson Clubb, Benton Winfrey, Alisen Chapman, Kari Leake, Zach Beneduci, River Pasquale, Tom Aitken, Rowan Scott, and Liz Wilgenbusch. We are grateful for the assistance of lab technicians who helped with processing bee samples Ruichen Wang, Claire Netto, Abby Guinan, Erin Thomas, Maggie Lydon, Aliza Newton, Cora Attias-Inzano, Gabe Olland, Nina Costanza, Brian Onwuka, Luca Pillidge, Suza Hooker, Ethan Goncalves, and Cyd Roy-Clark. Undergraduate and graduate student support was also provided by the University of Massachusetts-Amherst and the University of Missouri.

If the bee disappeared off the surface of the globe, then man would have only four years of life left. No more bees, no more pollination, no more plants, no more animals, no more man.

Albert Einstein

