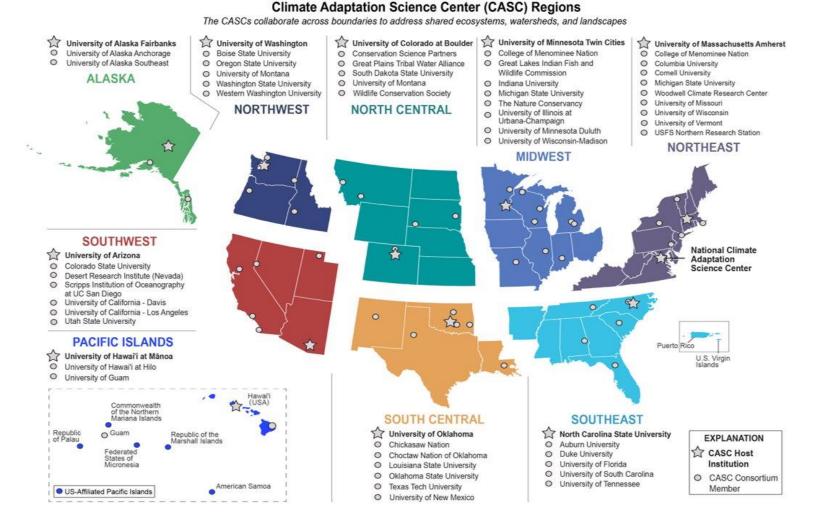

Leveraging Partnerships to Close the Science-Usability Gap

Marina Tomer Assistant Regional Administrator USGS, South Central Climate Adaptation Science Center 2023 Managing by Network Case Study


The Climate Adaptation Science Centers

MISSION: Delivering science to help fish, wildlife, water, land, and people adapt to a changing climate.

Question: Raise your hand if you have heard of the CASCs?

MISSION: Delivering science to help fish, wildlife, water, land, and people adapt to a changing climate.

USGS cience for a changing world

Our Partners

HIGHLIGHTS:

336

agencies &

institutions

360 University employee partners

35 **Projects with Tribal** collaborations

306 **Federal agency** partnerships (DOI)

77 **University students** and post-docs

12 **BIA tribal resilience** liaisons

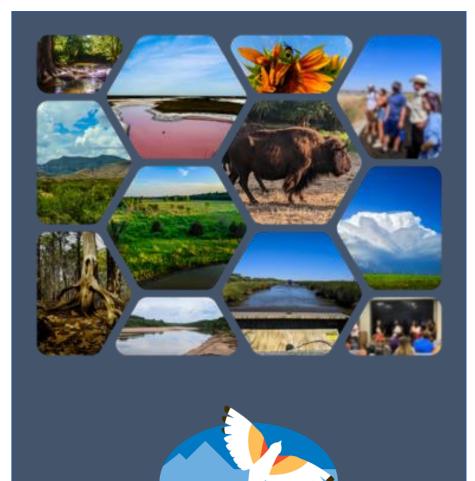
Ongoing collaborations with federal partners:				
USFWS	62			
NPS	36			
BLM	10			
BOR	3			
USFS	74			
NOAA	17			

Actionable Science:

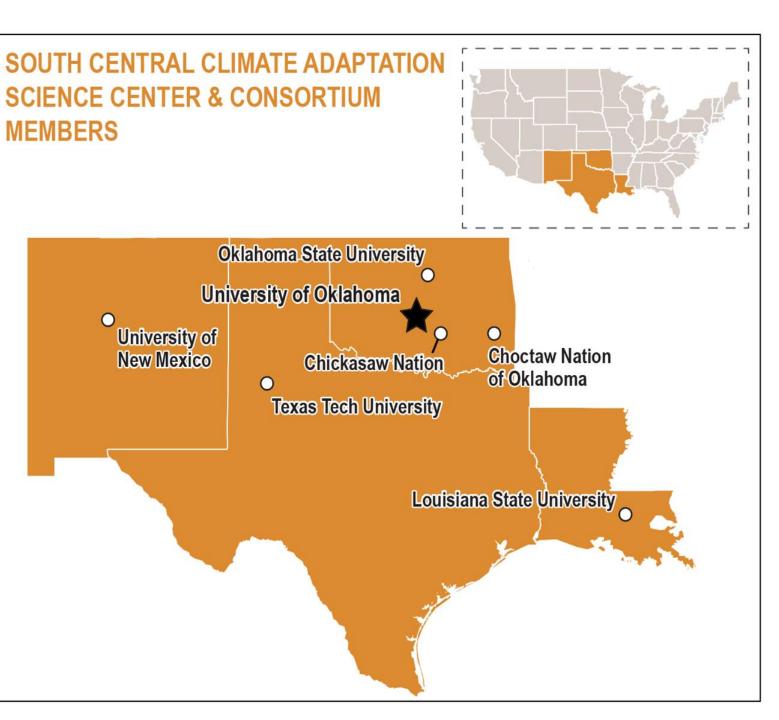
Question: What does actionable science mean to you?

SETTA

Actionable Science:


We want the server

Science that is used to inform decision-making and help solve real-world problems.


s anging

Terminology

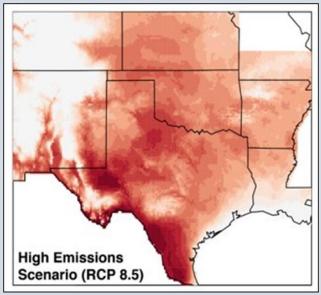
- Stakeholder: end-users of the outputs and findings of a scientific process
- Actionable science: scientific outputs or findings that are useful, usable, and used to support a management plan, decision, or action
- Stakeholder engagement: one process by which scientific outputs or findings can be made actionable
- **Co-production**: iterative, two-way engagement that grounds scientific objectives within the management context

SOUTH CENTRAL CLIMATE ADAPTATION SCIENCE CENTER

South Central CASC's

Foundational Activities

SOUTH CENTRAL CLIMATE ADAPTATION SCIENCE CENTER Funding Actionable Climate Science


Tribal Engagement

Education & Training

Climate Projections & Downscaling

Technical Assistance

Research Funding Approach

Co-produce knowledge with end-users to protect public land and natural resources: Federal, State, and Tribal agencies and non-profit organizations.

- Build interdisciplinary and multidisciplinary teams to conduct cuttingedge research.
- Go beyond the "loading dock" science model and support adaptation planning decisions based in science.

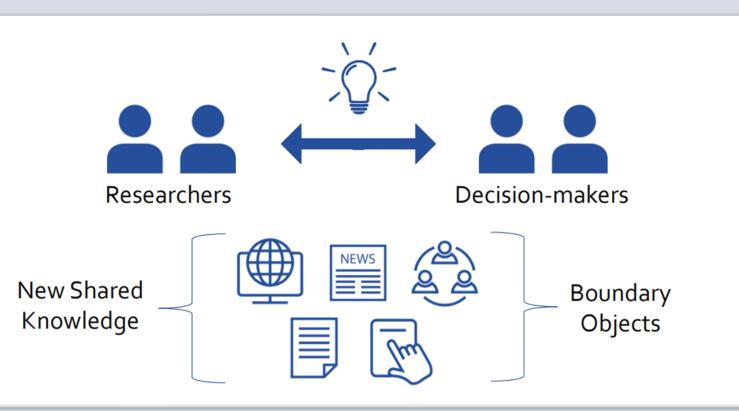
Many Approaches to Identifying Climate Science Needs

Science Advisory Committee

State visits & listening sessions

End user involvement in research

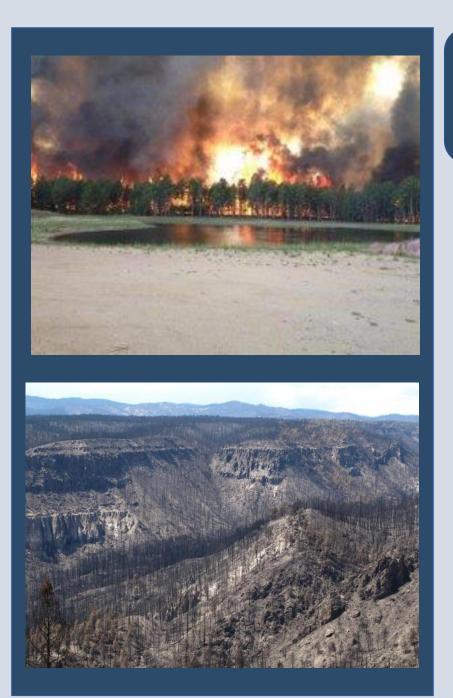
Boundary-spanning staff & partners


Meetings with end users

Document analysis & program evaluation

Science Advisory Committee

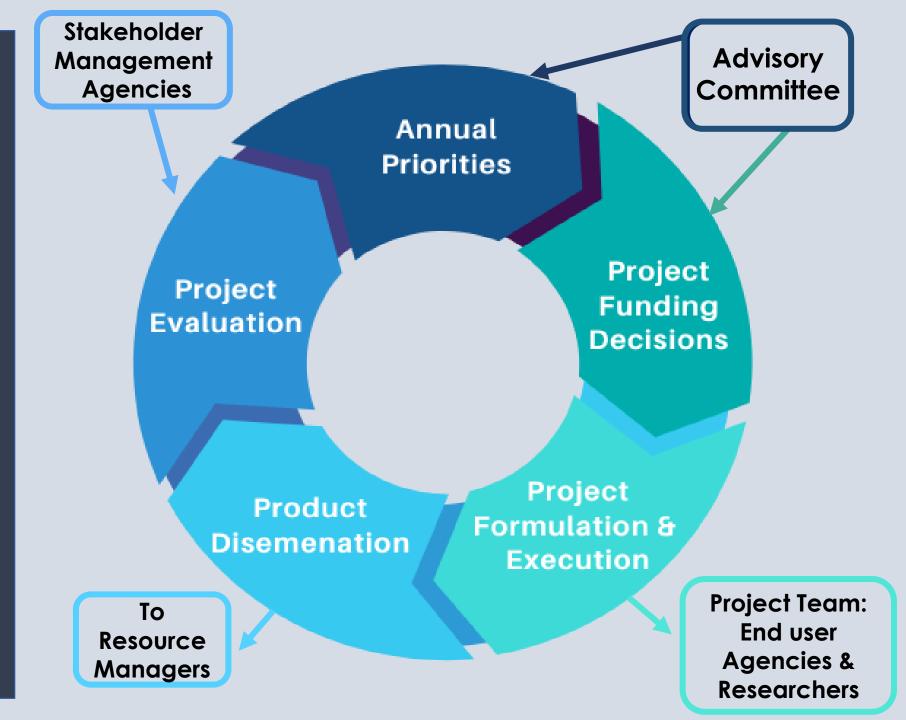
Actionable Science- Examples


Managing the Impacts of Climate Change and Land Loss on Native American Archaeological Sites in Coastal Louisiana

PI: Kory Konsoer (LSU)

• Goal: produce scientific knowledge and strategic planning for **cultural resource management (CRM)** in response to rapidly changing anthropogenic environments of Louisiana's Gulf Coast

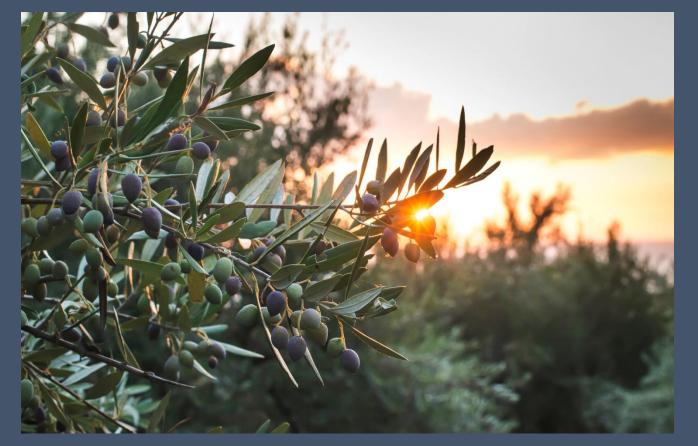
• Chitimacha Tribe of Louisiana, archaeologists, climate scientists, geologists, and engineers from Louisiana State University, Tulane University, University of Louisiana at Lafayette, and the National Park Service


• Produce a **climate-informed CRM plan** for the future of Louisiana's **imperiled coast**

The Effects of Wildfire on Snow Water Resources under Multiple Climate Conditions PI: David Moeser (USGS NM WSC)

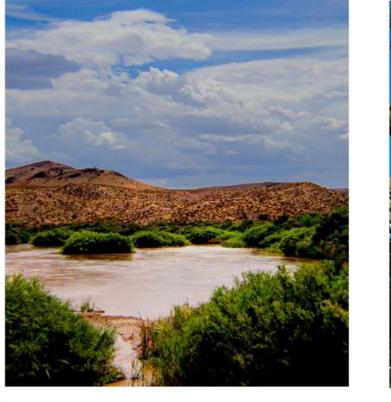
- Snowmelt accounts for 70% of streamflow in the Colorado and Rio Grande Rivers.
- Wildfire disrupts the role of mountain forests in the hydrologic cycle.
- Model the effects of wildfire on snow-water resources, canopy structure and snow storage (Las Conchas Fire burn zone).
- Results improve snow-water forecasting, and therefore water resource planning.
 - Earlier peak flows in snow-dominated areas.

How we Involve End Users in the Production of Science?



Research Engagement Approaches

Inform	Consult	Participate	Empower
 One-way communication Few engagements Often at end of project 	 Limited two-way communication Several engagements 	 Extensive iterative two-way communication Ongoing engagement 	 Co-equal working relationships Long-term & ongoing engagement
<i>Example:</i> Inform stakeholders of project results by giving a webinar or making a fact sheet	Example: Consult with stakeholders regarding key species for which to run a model and later ask which are most useful variables from model outputs	<i>Example:</i> Stakeholders help refine research questions and provide input at regular points during research process	Example: Stakeholders are co- investigators on the science team and are entrusted to make project decisions


*** Links to class: MBN Session 3 What is the goal? "Community Collaboration Toolbox"

	INFORM	CONSULT	COOPERATE	COLLABORATE		
GOAL	Provide information to improve understanding of issues, alternatives and decisions	Obtain feedback on issues, alternatives, analysis, or decisions.	Consistently include partner and stakeholder input to ensure that positions and concerns are understood and considered in decision making.	Work collaboratively with partners and stakeholders to identify strategies and desired outcomes, develop alternatives and identify solutions.		
7	IAP2 Spectrum of Public Engagement					

Question for group reflection & discussions: (2-3 volunteers)

 What are some examples of how our agencies are involved in coproducing and co-developing science?

State Visits & Listening Sessions

- Build trust
- Listen to climate science needs of managers
- Share current activities & research
- Explore opportunities for collaboration

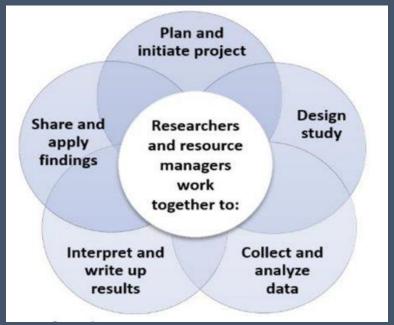
Boundary Spanning Partners & Staff

"An intermediary with relevant science and management expertise that enable exchange between knowledge producers and users" (Cross et. al., 2022)

Southwest Climate Hub U.S. DEPARTMENT OF AGRICULTURE

Southern Plains Climate Hub

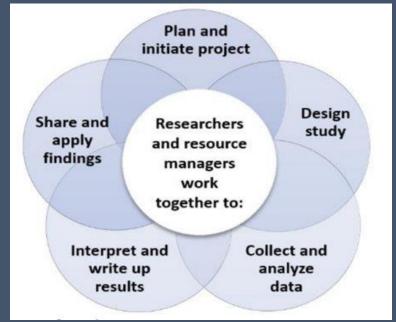
Climate Adaptation Specialist & Planner:


- Dr. Dolly Na-Yemeh
- Dr. Sharon Hausam

Tribal Liaisons:

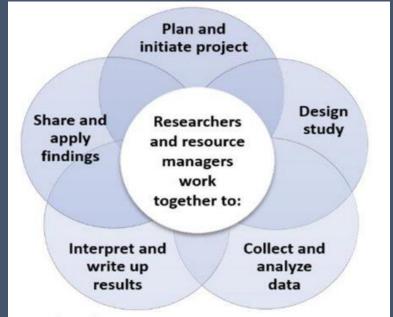
- Amelia Cook
- Yvette Wiley

- 1. Co-production scoping and design
 - Clarify agency management need
 - Clarify why the project is needed, who will use the products, and how they will be used



Source: a problem solving-checklist for co-production

- 1. Co-production scoping and design
 - Clarify agency management need
 - Clarify why the project is needed, who will use the products, and how they will be used
- 2. Clarifying roles, involvement, and decision-making
 - Who is connected to the decision and should be involved?
 - Who are the trusted agents?

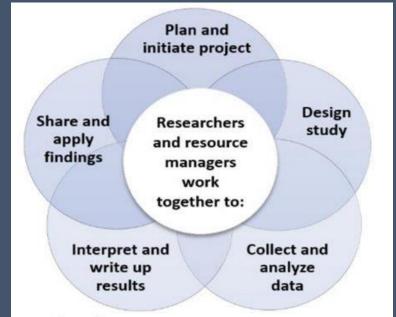


Source: a problem solving-checklist for co-production

- 1. Co-production scoping and design
 - Clarify agency management need
 - Clarify why the project is needed, who will use the products, and how they will be used
- 2. Clarifying roles, involvement, and decision-making
 - Who is connected to the decision and should be involved?
 - Who are the trusted agents?
- **3. Defining and conducting the project**
 - How will you gather end-user input?
 - Give equal space to management and research perspectives

Source: a problem solving-checklist for co-production

- 1. Co-production scoping and design
 - Clarify agency management need
 - Clarify why the project is needed, who will use the products, and how they will be used
- 2. Clarifying roles, involvement, and decision-making
 - Who is connected to the decision and should be involved?
 - Who are the trusted agents?
- **3. Defining and conducting the project**
 - How will you gather end-user input?
 - Give equal space to management and research perspectives
- 4. Communicating findings and supporting product use
 - How will the project team work to support integration and use of project products in agency decisions and work processes



Source: a problem solving-checklist for co-production

- 1. Co-production scoping and design
 - Clarify agency management need
 - Clarify why the project is needed, who will use the products, and how they will be used
- 2. Clarifying roles, involvement, and decision-making
 - Who is connected to the decision and should be involved?
 - Who are the trusted agents?
- **3. Defining and conducting the project**
 - How will you gather end-user input?
 - Give equal space to management and research perspectives
- 4. Communicating findings and supporting product use
 - How will the project team work to support integration and use of project products in agency decisions and work processes
- 5. Evaluating progress, outcomes, and assessing impact
 - Who will evaluate the project, process, and products? What will be the criteria for success of each

Source: a problem solving-checklist for co-production

Concluding Reflections

- By working closely with end users, scientists can produce the kind of results that conservation organizations need to make informed decisions.
- Closing the science usability-gap requires **building and sustaining relationships** to effectively conduct actionable science.
- Not a one-size fits all approach:
 - Place-based approaches & shared commitment by researchers and resource managers to work together in partnership.

Concluding Reflections

• "Boundary spanners" can strengthen information usability and sustain meaningful partner engagement.

• Positions that focus on fostering and maintaining relationships are integral to supporting partnership-driven work that spans across organizations.

<u>Contact info:</u> Marina Tomer South Central CASC, USGS **Mcucuzza@usgs.gov**

Thank

you!